1,136 research outputs found

    Chemical composition and anti-biofilm activity of burdock (Arctium lappa L Asteraceae) leaf fractions against Staphylococcus aureus

    Get PDF
    Purpose: To determine the chemical composition and anti-biofilm activity of burdock leaf fractions against Staphylococcus aureusMethods: The anti-biofilm activity of burdock leaf fractions obtained by column chromatography against S. aureus was determined by minimum inhibitory concentration (MIC). Scanning electron microscopy was employed to further investigate the inhibitory activity. Analysis of the chemical composition of the fractions was performed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS).Results: The 20 and 34 % ethanol fractions each inhibited the formation of biofilm by S. aureus, with half maximal inhibitory concentration (IC50) ranging from 110 to 150 μg/ml. The 70 % ethanol elution fraction exhibited the strongest inhibitory activity against biofilm formation with IC50 of 13 μg/ml. The minimum inhibitory concentration of the 70 % ethanol fraction completely inhibited the formation of biofilm at a concentration of 0.5 mg/ml, which was lower than the MIC for the growth of the test bacterium (1.25 mg/ml). Scanning electron microscopy (SEM) showed that there was no biofilm formation for cultures treated with burdock leaf fraction, thus confirming the inhibitory efficiency of burdock leaf fraction against biofilm formation. UPLC-MS data identified five active compounds, namely, :caffeic acid, p-coumaric acid, cynarin, quercetin and luteolin.Conclusion: The biofilm formation inhibitory effect of burdock leaf was not only due to its inhibitory effect on bacterial growth but appear to be influenced by its effect on bacterial surface hydrophobicity, and aggregation. Thus, the leaf fractions may be useful in the control of biofilms.Keywords: Biofilm, Staphylococcus aureus, Arctium lappa, Burdock leaf, Scanning electron microscope, Ultra-performance liquid chromatography-mass spectrometr

    A self-consistent perturbative evaluation of ground state energies: application to cohesive energies of spin lattices

    Full text link
    The work presents a simple formalism which proposes an estimate of the ground state energy from a single reference function. It is based on a perturbative expansion but leads to non linear coupled equations. It can be viewed as well as a modified coupled cluster formulation. Applied to a series of spin lattices governed by model Hamiltonians the method leads to simple analytic solutions. The so-calculated cohesive energies are surprisingly accurate. Two examples illustrate its applicability to locate phase transition.Comment: Accepted by Phys. Rev.

    Compact Circularly Polarized Multiband Antennas for RFID Applications

    Get PDF
    This paper presents multiband circularly polarized (CP) antennas for radio frequency identification (RFID). A coax-fed and a microstrip-line-fed antennas having optimized cross-slots in their patches are first designed for dual-band CP operation. The microstrip-line-fed design is then modified, by incorporating a U-shaped slot in its partial ground plane, to achieve additional operation band with a CP characteristic. Simulation and measured results of the presented designs are reported. The measured results are in accordance with the computed ones. The compact size and CP property make these designs suitable for RFID applications

    IOT components for production quality monitoring

    Get PDF
    To automate the creation of IoT systems, design tools are used in the form of IoT platforms. The structure of the stack in the IoT network is considered. The connection of sensors with means of primary processing, including protocols and data structure, is described. A generalized algorithm for creating a network using the IoT plat-form Bluemix from IBM is presented. The forms of the developed user interface are described

    Lack of correlation of stem cell markers in breast cancer stem cells

    Get PDF
    BACKGROUND: Various markers are used to identify the unique sub-population of breast cancer cells with stem cell properties. Whether these markers are expressed in all breast cancers, identify the same population of cells, or equate to therapeutic response is controversial. METHODS: We investigated the expression of multiple cancer stem cell markers in human breast cancer samples and cell lines in vitro and in vivo, comparing across and within samples and relating expression with growth and therapeutic response to doxorubicin, docetaxol and radiotherapy. RESULTS: CD24, CD44, ALDH and SOX2 expression, the ability to form mammospheres and side-population cells are variably present in human cancers and cell lines. Each marker identifies a unique rather than common population of cancer cells. In vivo, cells expressing these markers are not specifically localized to the presumptive stem cell niche at the tumour/stroma interface. Repeated therapy does not consistently enrich cells expressing these markers, although ER-negative cells accumulate. CONCLUSIONS: Commonly employed methods identify different cancer cell sub-populations with no consistent therapeutic implications, rather than a single population of cells. The relationships of breast cancer stem cells to clinical parameters will require identification of specific markers or panels for the individual cancer

    Selection at a single locus leads to widespread expansion of toxoplasma gondii lineages that are virulent in mice

    Get PDF
    The determinants of virulence are rarely defined for eukaryotic parasites such as T. gondii, a widespread parasite of mammals that also infects humans, sometimes with serious consequences. Recent laboratory studies have established that variation in a single secreted protein, a serine/threonine kinase known as ROPO18, controls whether or not mice survive infection. Here, we establish the extent and nature of variation in ROP18among a collection of parasite strains from geographically diverse regions. Compared to other genes, ROP18 showed extremely high levels of diversification and changes in expression level, which correlated with severity of infection in mice. Comparison with an out-group demonstrated that changes in the upstream region that regulates expression of ROP18 led to an historical increase in the expression and exposed the protein to diversifying selective pressure. Surprisingly, only three atypically distinct protein variants exist despite marked genetic divergence elsewhere in the genome. These three forms of ROP18 are likely adaptations for different niches in nature, and they confer markedly different virulence to mice. The widespread distribution of a single mouse-virulent allele among geographically and genetically disparate parasites may have consequences for transmission and disease in other hosts, including humans

    Cancer stem cell heterogeneity in hereditary breast cancer

    Get PDF
    The cancer stem cell hypothesis proposes that tumors arise in stem or progenitor cells generating in tumors driven by a subcomponent that retains cancer stem cell properties. Recent evidence supports the hypothesis that the BRCA1 gene involved in hereditary breast cancer plays a role in breast stem cell function. Furthermore, studies using mouse BRCA1 knockout models provide evidence for the existence of heterogeneous cancer stem cell populations in tumors generated in these mice. Although these populations may arise from different stem/progenitor cells, they share the expression of a common set of stem cell regulatory genes and show similar characteristics in in vitro mammosphere assays and xenograft models. Furthermore, these 'cancer stem cells' display resistance to chemotherapeutic agents. These studies suggest that breast tumors may display intertumor stem cell heterogeneity. Despite this heterogeneity, cancer stem cells may share common characteristics that can be used for their identification and for therapeutic targeting

    Long-Term Sphere Culture Cannot Maintain a High Ratio of Cancer Stem Cells: A Mathematical Model and Experiment

    Get PDF
    Acquiring abundant and high-purity cancer stem cells (CSCs) is an important prerequisite for CSC research. At present, researchers usually gain high-purity CSCs through flow cytometry sorting and expand them by short-term sphere culture. However, it is still uncertain whether we can amplify high-purity CSCs through long-term sphere culture. We have proposed a mathematical model using ordinary differential equations to derive the continuous variation of the CSC ratio in long-term sphere culture and estimated the model parameters based on a long-term sphere culture of MCF-7 stem cells. We found that the CSC ratio in long-term sphere culture presented as gradually decreased drift and might be stable at a lower level. Furthermore, we found that fitted model parameters could explain the main growth pattern of CSCs and differentiated cancer cells in long-term sphere culture

    TeCNO: Surgical Phase Recognition with Multi-Stage Temporal Convolutional Networks

    Full text link
    Automatic surgical phase recognition is a challenging and crucial task with the potential to improve patient safety and become an integral part of intra-operative decision-support systems. In this paper, we propose, for the first time in workflow analysis, a Multi-Stage Temporal Convolutional Network (MS-TCN) that performs hierarchical prediction refinement for surgical phase recognition. Causal, dilated convolutions allow for a large receptive field and online inference with smooth predictions even during ambiguous transitions. Our method is thoroughly evaluated on two datasets of laparoscopic cholecystectomy videos with and without the use of additional surgical tool information. Outperforming various state-of-the-art LSTM approaches, we verify the suitability of the proposed causal MS-TCN for surgical phase recognition.Comment: 10 pages, 2 figure
    corecore